Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2621, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197168

RESUMO

The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Microfluídica/instrumentação , Anticorpos/farmacologia , Astrócitos , Barreira Hematoencefálica/citologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Endotélio Vascular/citologia , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Microvasos/citologia , Pericitos , Permeabilidade , Células-Tronco Pluripotentes , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos
2.
Diabetes ; 66(8): 2220-2229, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28396510

RESUMO

Dysfunctional T cells can mediate autoimmunity, but the inaccessibility of autoimmune tissues and the rarity of autoimmune T cells in the blood hinder their study. We describe a method to enrich and harvest autoimmune T cells in vivo by using a biomaterial scaffold loaded with protein antigens. In model antigen systems, we found that antigen-specific T cells become enriched within scaffolds containing their cognate antigens. When scaffolds containing lysates from an insulin-producing ß-cell line were implanted subcutaneously in autoimmune diabetes-prone NOD mice, ß-cell-reactive T cells homed to these scaffolds and became enriched. These T cells induced diabetes after adoptive transfer, indicating their pathogenicity. Furthermore, T-cell receptor (TCR) sequencing identified many expanded TCRs within the ß-cell scaffolds that were also expanded within the pancreata of NOD mice. These data demonstrate the utility of biomaterial scaffolds loaded with disease-specific antigens to identify and study rare, therapeutically important T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Linfócitos T/citologia , Transferência Adotiva/métodos , Animais , Antígenos/administração & dosagem , Autoimunidade/imunologia , Linhagem Celular , Movimento Celular , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/imunologia , Receptores de Antígenos de Linfócitos T/análise , Linfócitos T/imunologia , Alicerces Teciduais/química
3.
Adv Biosyst ; 1(7): e1700094, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32646174

RESUMO

Tumor cells circulating throughout the body have shown great potential for providing new diagnostic or therapeutic strategies for treating cancer patients. However, isolating circulating tumor cells (CTCs) is still challenging due to the lack of broad spectrum reagents that bind specifically to these cells. This study shows that an engineered human blood opsonin that mimics the innate immune mechanism for opsonizing complex mannan carbohydrates, Fc-mannose binding lectin (FcMBL), exhibits a broad spectrum of CTC binding activity. Using FcMBL-coated magnetic beads, this study is able to specifically capture and isolate a broad range of tumor cells spiked into buffer or blood. FcMBL is bound preferentially to human and mouse breast cancer cells relative to normal breast epithelium, and this study demonstrates the capture of seven different types of cancer cells with greater than 90% capture efficiency, whereas two of these same cancer cells bound poorly to anti epithelial cell adhesion molecule antibodies. It is also confirmed that FcMBL-coated magnetic beads can be used to capture CTCs from the blood of mice bearing metastatic tumors. The FcMBL capture technology may therefore provide a new tool for harvesting a broad range of CTCs with high efficiency as it targets tumor cell specific surface markers that are expressed across diverse cell types and retained throughout the metastatic process.

4.
EBioMedicine ; 9: 217-227, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333027

RESUMO

BACKGROUND: Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. METHODS: An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. RESULTS: The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (<1h) detected the presence of active infection in animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. CONCLUSION: The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies.


Assuntos
Bactérias/metabolismo , Imunoensaio , Moléculas com Motivos Associados a Patógenos/sangue , Sepse/diagnóstico , Idoso , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Área Sob a Curva , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Proteína C-Reativa/análise , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Feminino , Humanos , Lectinas/química , Lectinas/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Pessoa de Meia-Idade , Curva ROC , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Sepse/tratamento farmacológico , Suínos
5.
Tissue Eng Part C Methods ; 22(5): 509-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993746

RESUMO

Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro.


Assuntos
Medula Óssea/patologia , Raios gama/efeitos adversos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Células Mieloides/citologia , Animais , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Proteínas Sanguíneas/administração & dosagem , Medula Óssea/efeitos da radiação , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos da radiação
6.
Mol Med ; 22: 22-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26772775

RESUMO

Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme.

7.
Small ; 11(42): 5657-66, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26389806

RESUMO

Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h(-1) . Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce ), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.


Assuntos
Patógenos Transmitidos pelo Sangue/isolamento & purificação , Separação Celular/normas , Citometria de Fluxo/normas , Nanopartículas de Magnetita , Modelos Teóricos , Esterilização/métodos , Calibragem , Separação Celular/instrumentação , Separação Celular/métodos , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Dispositivos Lab-On-A-Chip , Nanopartículas de Magnetita/normas , Técnicas Microbiológicas/métodos , Staphylococcus aureus/isolamento & purificação , Esterilização/instrumentação
8.
Biomaterials ; 67: 382-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253638

RESUMO

Here we describe development of an extracorporeal hemoadsorption device for sepsis therapy that employs commercially available polysulfone or polyethersulfone hollow fiber filters similar to those used clinically for hemodialysis, covalently coated with a genetically engineered form of the human opsonin Mannose Binding Lectin linked to an Fc domain (FcMBL) that can cleanse a broad range of pathogens and endotoxin from flowing blood without having to first determine their identity. When tested with human whole blood in vitro, the FcMBL hemoadsorption filter (FcMBL-HF) produced efficient (90-99%) removal of Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria, fungi (Candida albicans) and lipopolysaccharide (LPS)-endotoxin. When tested in rats, extracorporeal therapy with the FcMBL-HF device reduced circulating pathogen and endotoxin levels by more than 99%, and prevented pathogen engraftment and inflammatory cell recruitment in the spleen, lung, liver and kidney when compared to controls. Studies in rats revealed that treatment with bacteriocidal antibiotics resulted in a major increase in the release of microbial fragments or 'pathogen-associated molecular patterns' (PAMPs) in vivo, and that these PAMPs were efficiently removed from blood within 2 h using the FcMBL-HF; in contrast, they remained at high levels in animals treated with antibiotics alone. Importantly, cleansing of PAMPs from the blood of antibiotic-treated animals with the FcMBL-hemoadsorbent device resulted in reduced organ pathogen and endotoxin loads, suppressed inflammatory responses, and resulted in more stable vital signs compared to treatment with antibiotics alone. As PAMPs trigger the cytokine cascades that lead to development of systemic inflammatory response syndrome and contribute to septic shock and death, co-administration of FcMBL-hemoadsorption with antibiotics could offer a more effective approach to sepsis therapy.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Circulação Extracorpórea , Hemofiltração , Proteínas Opsonizantes/uso terapêutico , Adsorção , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Lipopolissacarídeos , Masculino , Ratos Wistar
9.
Philos Sci ; 82(4): 556-586, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27313331

RESUMO

Using Gebharter's (2014) representation, we consider aspects of the problem of discovering the structure of unmeasured sub-mechanisms when the variables in those sub-mechanisms have not been measured. Exploiting an early insight of Sober's (1998), we provide a correct algorithm for identifying latent, endogenous structure-sub-mechanisms-for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned.

10.
Nat Biotechnol ; 32(11): 1134-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25306244

RESUMO

Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/uso terapêutico , Trombose/prevenção & controle , Animais , Biofilmes/efeitos dos fármacos , Catéteres/microbiologia , Equipamentos e Provisões/microbiologia , Humanos , Propriedades de Superfície , Suínos
11.
Nat Med ; 20(10): 1211-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25216635

RESUMO

Here we describe a blood-cleansing device for sepsis therapy inspired by the spleen, which can continuously remove pathogens and toxins from blood without first identifying the infectious agent. Blood flowing from an infected individual is mixed with magnetic nanobeads coated with an engineered human opsonin--mannose-binding lectin (MBL)--that captures a broad range of pathogens and toxins without activating complement factors or coagulation. Magnets pull the opsonin-bound pathogens and toxins from the blood; the cleansed blood is then returned back to the individual. The biospleen efficiently removes multiple Gram-negative and Gram-positive bacteria, fungi and endotoxins from whole human blood flowing through a single biospleen unit at up to 1.25 liters per h in vitro. In rats infected with Staphylococcus aureus or Escherichia coli, the biospleen cleared >90% of bacteria from blood, reduced pathogen and immune cell infiltration in multiple organs and decreased inflammatory cytokine levels. In a model of endotoxemic shock, the biospleen increased survival rates after a 5-h treatment.


Assuntos
Órgãos Artificiais , Circulação Extracorpórea/instrumentação , Sepse/sangue , Sepse/terapia , Baço , Animais , Engenharia Biomédica , Materiais Biomiméticos , Endotoxinas/sangue , Endotoxinas/isolamento & purificação , Desenho de Equipamento , Escherichia coli/isolamento & purificação , Humanos , Magnetismo , Masculino , Lectina de Ligação a Manose/genética , Técnicas Analíticas Microfluídicas , Dados de Sequência Molecular , Proteínas Opsonizantes/genética , Ratos , Ratos Wistar , Sepse/microbiologia , Staphylococcus aureus/isolamento & purificação
12.
Cell ; 128(3): 613-24, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17289578

RESUMO

To illuminate the evolutionary pressure acting on the folding free energy landscapes of naturally occurring proteins, we have systematically characterized the folding free energy landscape of Top7, a computationally designed protein lacking an evolutionary history. Stopped-flow kinetics, circular dichroism, and NMR experiments reveal that there are at least three distinct phases in the folding of Top7, that a nonnative conformation is stable at equilibrium, and that multiple fragments of Top7 are stable in isolation. These results indicate that the folding of Top7 is significantly less cooperative than the folding of similarly sized naturally occurring proteins, suggesting that the cooperative folding and smooth free energy landscapes observed for small naturally occurring proteins are not general properties of polypeptide chains that fold to unique stable structures but are instead a product of natural selection.


Assuntos
Dobramento de Proteína , Proteínas/química , Seleção Genética , Dicroísmo Circular , Cinética , Modelos Químicos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Estrutura Secundária de Proteína , Termodinâmica
13.
J Mol Biol ; 362(5): 1004-24, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16949611

RESUMO

We recently used computational protein design to create an extremely stable, globular protein, Top7, with a sequence and fold not observed previously in nature. Since Top7 was created in the absence of genetic selection, it provides a rare opportunity to investigate aspects of the cellular protein production and surveillance machinery that are subject to natural selection. Here we show that a portion of the Top7 protein corresponding to the final 49 C-terminal residues is efficiently mis-translated and accumulates at high levels in Escherichia coli. We used circular dichroism, size-exclusion chromatography, small-angle X-ray scattering, analytical ultra-centrifugation, and NMR spectroscopy to show that the resulting C-terminal fragment (CFr) protein adopts a compact, extremely stable, homo-dimeric structure. Based on the solution structure, we engineered an even more stable variant of CFr by disulfide-induced covalent circularisation that should be an excellent platform for design of novel functions. The accumulation of high levels of CFr exposes the high error rate of the protein translation machinery. The rarity of correspondingly stable fragments in natural proteins coupled with the observation that high quality ribosome binding sites are found to occur within E. coli protein-coding regions significantly less often than expected by random chance implies a stringent evolutionary pressure against protein sub-fragments that can independently fold into stable structures. The symmetric self-association between two identical mis-translated CFr sub-domains to generate an extremely stable structure parallels a mechanism for natural protein-fold evolution by modular recombination of protein sub-structures.


Assuntos
Evolução Molecular , Engenharia de Proteínas , Sequência de Aminoácidos , Cromatografia em Gel , Dicroísmo Circular , Biologia Computacional , Cristalografia/métodos , Dimerização , Dissulfetos/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ultracentrifugação
14.
Eur J Biochem ; 271(9): 1615-22, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15096200

RESUMO

Understanding the sequence determinants of protein structure, stability and folding is critical for understanding how natural proteins have evolved and how proteins can be engineered to perform novel functions. The complexity of the protein folding problem requires the ability to search large volumes of sequence space for proteins with specific structural or functional characteristics. Here we describe our efforts to identify novel proteins using a phage-display selection strategy from a 'mini-exon' shuffling library generated from the yeast genome and from completely random sequence libraries, and compare the results to recent successes in generating novel proteins using in silico protein design.


Assuntos
Biblioteca de Peptídeos , Dobramento de Proteína , Evolução Molecular , Saccharomyces cerevisiae/genética , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...